NASA unveils model of LISA, a satellite array for studying ripples in space-time

The gravitational space observatory is on track to launch in 2035.
A technician inspects a prototype LISA telescope.
The prototype LISA telescope undergoes post-delivery inspection in a darkened NASA Goddard clean room on May 20. The entire telescope is made from an amber-colored glass-ceramic that resists changes in shape over a wide temperature range, and the mirror’s surface is coated in gold. Credit: NASA / Dennis Henry

Share

NASA has released new images of the full-scale prototypes of six telescopes slated to observe some of the universe’s tiniest fluctuations. On October 22, the agency showed off mock-ups of the Laser Interferometer Space Antenna (LISA), a European Space Agency-led project slated to embark on its mission around 2035. While not the final working equipment meant to measure gravitational waves, the mock-up offers glimpses of a design that will likely resemble the machine array destined to help astronomers discover potentially groundbreaking insights into the universe and its origins.

A close view of a prototype LISA telescope.
A closer view of the full-scale prototype LISA telescope in a clean room at NASA Goddard. The telescope’s translucent, amber-colored material glows as an engineer behind it inspects the structure with a flashlight. A gold-coated mirror, near center, reflects a magnified image of part of the telescope. Credit: NASA / Dennis Henry Denny Henry
Clean room technicians move a prototype LISA telescope. Credit: NASA / Dennis Henry
On May 20, the full-scale Engineering Development Unit Telescope for the LISA (Laser Interferometer Space Antenna) mission, still in its shipping frame, was moved within a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA / Dennis Henry Denny Henry

In about a decade’s time, three carefully arranged spacecraft, each containing two telescopes, are slated to begin firing infrared laser beams 1.6 million miles between one another to measure the effects of cosmic gravitational waves. The ESA and NASA hope LISA will reveal new information from ripples in spacetime that span just trillionths of a meter. The intricacies of supermassive black holes, binary star collisions, and even the universe’s earliest moments may reside in LISA’s data—but before that, NASA needs to make sure their overall designs are flawless.

[Related: ESA will send a triangle of satellites into space to study gravitational waves.]

On Wednesday, the agency showed off its mock-ups of the LISA spacecraft, called the Engineering Development Unit Telescope. Ryan DeRosa, a researcher at NASA’s Goddard Space Flight Center, explained in an accompanying statement that the “prototype… will guide us as we work toward building the flight hardware.”

An ESA fnfographic provides information on gravitational waves and how the LISA mission will measure them using laser beams and free-floating cubes. Credit: ESA / ATG Medialab
An ESA fnfographic provides information on gravitational waves and how the LISA mission will measure them using laser beams and free-floating cubes. Credit: ESA / ATG Medialab

While each spacecraft will ultimately contain a solid, gold-platinum cube to help reflect laser beams traveling distances wider than the Sun, NASA commissioned its Engineering Development Unit Telescope on a smaller budget. The prototype is constructed entirely from an amber-hued glass-ceramic composite known as Zerodur and sourced from Germany. Meanwhile, the equipment telescope’s primary mirror is still coated in gold to help reflect the lasers while reducing heat loss—according to NASA, the telescope needs to counter deep space’s harsh environment, since it operates best when at room temperature.

[Related: Gravitational waves just showed us something even cooler than black holes.]

There are still a few years until LISA launches aboard an Ariane 6 rocket from the ESA’s spaceport in French Guiana. Even so, full-scale test-builds like NASA’s Engineering Development Unit Telescope help ensure the actual spacecraft will be best equipped to aid experts in studying some of the most delicate forces in the universe.